The Increasing Role of SUVs in Crash Involvement in Germany

12. September 2012
IRCOBI
Dublin

Axel Malczyk, Tina Gehlert
German Insurers Accident Research

Gerd Müller
Verein für Fahrzeugsicherheit e.V. Berlin
Literature

- Canada: Increased risk of serious injury or death for car drivers when opponent was an SUV or pick-up (Fredette et al., 2008)
- USA: Increased fatality risk for SUV occupants in roll-overs (Subramanian, 2006)
- USA: 3.4 times higher fatality risk for pedestrians when struck by LTV (incl. SUV) front than by passenger car front (Roudsari et al., 2004)
- Europe: Higher injury risk for car occupants and motorcyclists in collisions with SUV, higher risk of roll-over for SUVs, varying results regarding injury risk for pedestrians (EU project IMPROVER, 2006)
Definition of SUV

• EU project IMPROVER: SUV is a passenger vehicle (M1 class) with
 - approach angle > 25°
 - departure and ramp angle > 20°
 - ground clearance under front and rear axle > 180 mm
 - ground clearance between axles > 200 mm
 - vehicle height > 1600 mm
 - 4x4 drive not required

• Definition for own study: SUV is a passenger vehicle (M1 class) with
 - ground clearance ≥ 170 mm
 - vehicle height ≥ 1590 mm
 - 4x4 drive not required
Study Methodology

- Based on geometrical SUV criteria, 83 models identified (current and out-of-production), representing large majority of German SUV fleet
- Special analysis of German national accident statistics (all police-registered injury accidents) with involvement of these models
 - 1997 – 2008 injury accidents, general data
 - 2008 injury accidents for detailed analysis
- Detailed analysis of 361 injury accidents from insurer claim files (min. 15,000 € claim costs) with involvement of respective SUV models
- Analysis of two vehicle user surveys including SUV owners
SUV Definition for Study

SUV models differentiated by

- **Size**: vehicle track width used as indicator for SUV size
 - „small“ if track width ≤ 1550 mm
 - „large“ if track width > 1550 mm

Source (modified): BMW.de

short wheelbase version

long wheelbase version
SUV Definition for Study, cont‘d

SUV models differentiated by

- **Age**: market introduction as indicator for state-of-the-art passive safety
 - „old“ if model introduced before 2003
 - „new“ if introduced in 2003 or after

Source: euroncap.com
SUV Definition for Study, cont’d

SUV models differentiated by

- **Structure**: typical vehicle concept
 - SUV with „frame chassis“ design
 - SUV with „unibody“ design

Source: Daimler.com

Source: Audi.de
SUV Definition for Study, cont’d

SUV models differentiated by

- **Size**: vehicle track width used as indicator for SUV size
 - „small“ if track width ≤ 1550 mm
 - „large“ if track width > 1550 mm

- **Age**: market introduction as indicator for state-of-the-art passive safety
 - „old“ if model introduced before 2003
 - „new“ if introduced in 2003 or after

- **Structure**: typical vehicle concept
 - SUV with „frame chassis“ design
 - SUV with „unibody“ design

⇒ Eight SUV categories from „small / old / frame chassis“ to „large / new / unibody“ SUV model
National Statistics: Incidence Rate

- SUV crash involvement almost parallel to increasing share in fleet
National Statistics: Incidence Rate

- Involvement of small, old SUVs with frame chassis decreases
National Statistics: Incidence Rate

- Involvement of SUVs with unibody increases
National Statistics: Incidence Rate

- Involvement of new, especially large, SUVs with unibody increases
SUV-Passenger Car Accidents, Crash Outcome
Results from National Statistics, 2008

[number of fatally injured / number of collisions]

- all SUVs [6 / 2789]
- opponent car [24 / 2789]
- all SMALL SUVs [3 / 1462]
- opponent car [9 / 1462]
- all LARGE SUVs [3 / 1327]
- opponent car [15 / 1327]
- all OLD SUVs [5 / 1781]
- opponent car [12 / 1781]
- all NEW SUVs [1 / 1008]
- opponent car [12 / 1008]
- all FRAME CHASSIS SUVs [2 / 834]
- opponent car [8 / 834]
- all UNIBODY SUVs [4 / 1955]
- opponent car [16 / 1955]

[number of seriously injured / number of collisions]

- all SUVs [130 / 2789]
- opponent car [305 / 2789]
- all SMALL SUVs [90 / 1462]
- opponent car [161 / 1462]
- all LARGE SUVs [40 / 1327]
- opponent car [144 / 1327]
- all OLD SUVs [96 / 1781]
- opponent car [196 / 1781]
- all NEW SUVs [34 / 1008]
- opponent car [109 / 1008]
- all FRAME CHASSIS SUVs [46 / 834]
- opponent car [107 / 834]
- all UNIBODY SUVs [84 / 1955]
- opponent car [198 / 1955]
SUV-Passenger Car Accidents, Crash Outcome

Results from National Statistics, 2008

- Apparently, „large“ and „new“ SUVs present highest risk for car occupants
SUV-Passenger Car Accidents, Crash Outcome

Results from National Statistics, 2008

- Apparently, „large“ and „new“ SUVs present highest risk for car occupants
- „Old“ and „frame chassis“ SUVs with less protection for SUV occupants
SUV against Passenger Car, Injuries

Results from Insurers Cases (n = 156 accidents)

- All SUV-vs.-car collisions
- All occupants
- Frontal collisions SUV-vs.-car
- Belted drivers

- Higher risk of serious to critical (MAIS 3+) injury for car occupants
- AIS 3+ injuries of extremities indicate intrusion of car compartment
SUV against Passenger Car, Compatibility

Results from Insurers Cases (n = 156 accidents)

- Frontal collisions SUV-vs.-car

- Large majority of SUVs heavier than car opponent
- Difference in vehicle age less pronounced
SUV Single-Vehicle Accidents

National Statistics, 2008

- 6.4 % single-vehicle crashes in injury accidents with SUVs
- 10.7 % single-vehicle crashes in injury accidents with passenger cars
- 9 SUV occupant fatalities in single-vehicle accidents, 6 in collisions with passenger cars

Insurers Cases (n = 17 accidents)

- Altogether, 4 drivers and 3 front seat passengers killed, 27 occupants seriously injured
- 3 in 4 SUVs turned or rolled over during crash
SUV-Pedestrian Accidents

SUV-vs.-pedestrian cases compared to car-vs.-pedestrian cases

National Statistics, 2008

- No difference in injury outcome for pedestrians struck by SUVs and those struck by passenger cars
- Minor decrease in proportion of seriously and fatally injured when struck by “new” SUV vs. “old” SUV

Insurers Cases (n = 52 pedestrians)

- Proportion of MAIS 3+ injuries slightly higher than in group of pedestrians struck by pass. cars
- Minor differences in severity for head, chest, legs, pelvis between those struck by SUV and those struck by pass. car (not signif.)
Vehicle User Surveys

- Automotive supplier customer panel (incl. 686 SUV owners)
- 2010 survey „Traffic climate in Germany“ (incl. 306 SUV drivers)

- Similar gender distribution (male drivers: 56 % in SUV; 51 % pass. car)
- On average, similar age of SUV (mean: 45 yrs.) and pass. car drivers (mean: 50 yrs.), but smaller share of young and elderly drivers in SUVs
- SUV drivers reported ca. 30 % higher annual mileage
Summary / Conclusions: Driver Behavior

- SUVs not prominent in injury accidents in Germany
- Causes of SUV accidents not different from car accidents
- SUV drivers feel safer in traffic, perform distracting tasks more often during driving (e.g., cell phone use)
- No indication of directly unsafe behavior of SUV drivers (e.g., speeding)
- Typical age groups at risk clearly underrepresented
- However, young SUV drivers prominent in single-vehicle accidents
- Advantages partly compensated by higher exposure (i.e., mileage)
Summary / Conclusions: SUV Characteristics

- If collision with SUV occurs, higher injury risk in opponent car
- On average, SUVs 4.5 yrs. old, cars are 8.1 yrs. old in German fleet
- Change in SUV fleet towards larger unibody vehicles reflected in accident involvement
- Protection for SUV occupants improved, protection of crash opponents still insufficient
- Tendency for SUVs to roll over
- SUV-pedestrian accidents show slightly lower injury risk for head, slightly higher injury risk for leg and pelvis
- SUV crash compatibility remains an issue; possible countermeasures: larger area of energy-absorbing structure, emergency braking systems.
Thank you for your attention!

Contact:

Axel Malczyk
Unfallforschung der Versicherer (UDV)
German Insurers Accident Research
a.malczyk@gdv.de

SUV crash test videos and results on www.udv.de
Thank you for your attention!

Contact:

Axel Malczyk
Unfallforschung der Versicherer (UDV)
German Insurers Accident Research
a.malczyk@gdv.de

„Let‘s see, what great adventures Dad is going to experience today on the way to the office!“
Definition of SUV

• USA: Fatal Accident Reporting System (FARS) refers to ANSI D16.1 (American National Standard) "Utility Vehicle" is multi-purpose vehicle, generally with 4x4 drive and increased ground clearance, with max. permissible mass ≤ 4,500 kg

• USA: CFR 49 Part 523
Light trucks include SUVs, pick-up trucks, minivans and vans "Light truck" is … designed for off-highway operation and has 4x4 drive or

… fulfills certain geometrical requirements (e.g., min. approach and departure angle, min. ground clearance)

• CFR 49 Part 523 pertains also to average fuel economy standards. May become more stringent ⇒ re-classification of models
SUV Definition for Study, cont’d

SUV models differentiated by

- **Size**: vehicle track width used as indicator for SUV size
 - „small“ if track width ≤ 1550 mm
 - „large“ if track width > 1550 mm

- **Age**: market introduction as indicator for state-of-the-art passive safety
 - „old“ if model introduced before 2003
 - „new“ if introduced in 2003 or after
SUV Definition for Study, cont’d

SUV models differentiated by

- **Size**: vehicle track width used as indicator for SUV size
 - „small“ if track width ≤ 1550 mm
 - „large“ if track width > 1550 mm

- **Age**: market introduction as indicator for state-of-the-art passive safety
 - „old“ if model introduced before 2003
 - „new“ if introduced in 2003 or after

- **Structure**: typical vehicle concept
 - SUV with „frame chassis“ design
 - SUV with „unibody“ design
SUV Single-Vehicle Accidents

National Statistics

- 6.4% single-vehicle crashes among SUV injury accidents
- 10.7% single-vehicle crashes among passenger car injury accidents
- In 2008, 9 SUV occupant fatalities in single-vehicle accidents, 6 in collisions with passenger cars

USA (IIHS Fatality Facts, 2009)

- 64% of killed SUV occupants in single-vehicle crashes
- 46% of killed car occupants in single-vehicle crashes

Insurers Cases

- 17 cases of single-vehicle crashes among SUV accidents
- Altogether, 4 drivers and 3 front seat passengers killed, 27 occupants seriously injured
- 3 in 4 SUVs turned or rolled over during crash
SUV-Pedestrian Accidents

SUV-vs.-pedestrian cases compared to car-vs.-pedestrian cases

National Statistics

- No difference in injury outcome for pedestrians struck by SUVs and those struck by passenger cars
- Minor decrease in proportion of seriously and fatally injured when struck by "new" SUV vs. "old" SUV

Insurers Cases

- 52 cases of collisions between SUVs and pedestrians
- Proportion of MAIS 3+ injuries slightly higher than in group of pedestrians struck by pass. cars
- Minor differences in injury severity for head, chest, legs, pelvis when struck by SUV or struck by passenger car
Discussion / Conclusions, Driver Behavior

- SUVs not prominent in injury accidents in Germany
- Causes of SUV accidents not different from car accidents
- SUV drivers tend to feel generally safer in road traffic, operate navigation devices or cell phone more often during driving
- No indication of directly unsafe behavior of SUV drivers
- Typical SUV driver does not belong to age groups at risk
- In single-vehicle accidents, young SUV driver population prominent
- Low risk driver behavior partly compensated by higher accident exposure
Discussion / Conclusions, SUV characteristics

- If collision with SUV occurs, higher injury risk in opponent car
- SUVs in German fleet 4.5 yrs. old, the average German car is 8.1 yrs.
- Change in SUV fleet towards larger unibody vehicles reflected in accident involvement
- Protection for SUV occupants improved, protection of crash opponents still insufficient, despite change from frame chassis to unibody, partly due to growth in SUV mass
- Higher tendency to roll over also visible in Germany
- Pedestrian accidents show slightly lower risk for serious head injury, slightly higher risk for serious leg and pelvis injury, but not significant
- Some deficiencies in crash compatibility remain and should be addressed with larger energy-absorbing front areas, but also with emergency braking systems.